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A critical evaluation of theories of direct electron pair production 
by muons 

A G Wright 
Department of Physics, The Polytechnic of North London, London N7 8DB, UK 

MS received 18 August 1972 

Abstract. The development of the theory of direct pair production by relativistic muons is 
traced in an attempt to reconcile the existing theoretical expressions for the cross section. 
The interrelation of the theoretical treatments and the shortcomings ofapproximate formulae 
are examined. Cross sections are expressed in a form suitable for numerical evaluation and a 
direct comparison of the formulae of various authors is made. 

Numerical calculations of energy loss -dE/dx are presented and compared with com- 
putations of other authors. 

1. Introduction 

At the present time there is considerable confusion in the field of cosmic ray muon 
interactions as to the status of the theory of direct electron pair production. This is 
because many formulae and approximations exist (not all of which are valid) which 
offer different descriptions of the same phenomenon. The purpose of this work is to 
trace the logical development of the subject in an attempt to reveal certain shortcomings 
as well as the areas of general agreement. 

Cross sections for pair production have been available for many years. The early 
work of Bhabha (1935), Nishina et al (1935) and Racah (1937) in which the incident 
particle and field are treated classically, gives an acceptable description of the process 
only when the energy transferred to the electron-positron pair is small compared with 
the muon energy. A concise exposition of the theoretical results of Bhabha has been 
presented by R Davisson in Rossi (1952). The correct form of the cross section in the 
four regions IS, IN, 11s and IIN as defined by Bhabha is given. It is evident from these 
formulae that the cross section varies as U - ’  and u - ~  at U - and U - 10- respec- 
tively (U is defined as the ratio of the transferred energy to the incident energy). Mando 
and Ronchi (1952) obtained an expression for the mean energy loss -dE/dx derived 
from the cross section of Bhabha. This formula, although not given in the present work, 
has been extensively used (see, for example, Hayman et al (1963) and Kobayakawa 
(1967)). 

Major consideration will be given to those theories in which the process is treated 
quantum electrodynamically in accordance with the Feynman formalism. The diagrams 
(a) and (b )  of figure 1 respectively correspond to what Bhabha refers to as the ‘second’ 
and ‘first order’ processes; according to Kel’ner (1967) a further set, referred to as the 
interference diagrams, need not be taken into account in the case when the incident 
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Figure 1. The Feynman-Dyson diagrams for pair production. (a) Second order process. 
(b )  First order process. 

particle is a muon. The cross section comprises the sum of the contributions of the two 
pairs of diagrams. 

d o  = dc., + do,. (1) 

The first treatment using the QED formalism was presented by Murota et ul(1956), (to be 
referred to as MUT) and gave an indication that the early cross sections were inaccurate. 
The weakness of the formula presented lay in the appearance of an indeterminate 
constant E known only to be of the order of unity. The theory of Bhabha contains two 
such numbers k and k‘ which were introduced as cut-off parameters in the integration 
of the differential cross section over the angles of the outgoing particle momenta. This 
difficulty was overcome by Ternovskii (1960a) and Zapolsky (1962) who arrived at 
different expressions. In 1967 Kel’ner derived an expression valid for both small and 
large energy transfers. This was subsequently improved upon by Kel’ner and Kotov 
(1968) where screening was accounted for more satisfactorily. Finally Kokoulin and 
Petrukhin (1970) derived a formula based on that of Kel’ner and Kotov which is easier 
to compute. 

2. Differential cross sections 

The contributions to the cross section from both diagrams (a) and (b)  of figure 1 are 
derived subject to the condition that the energies of the participant particles are large 
compared with their rest energies, that is, 

e + ,  E -  >> nz, E >> 1, E-E’ >> 1 ( 2 )  

where E ( E - E ’ )  is the energy of the incident muon before (and after) the interaction, 
e + ( e - )  the energy of the positron (electron) and ~ ( p )  the rest mass of the electron (muon). 
These conditions, ensuring that all the participating particles are relativistic, are common 
to the derivations of all the above-mentioned authors. Cross sections valid for small 
energy transfers (E‘ < m) have been presented by Bhabha (1935) but will not be treated 
here. 
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For the comparison of theory with experiment, a cross section independent of the 
splitting of the pair energy is most frequently required-the quantity actually measured 
in the experiment being E'. We therefore express formulae (23) and (42) of MUT in terms 
of the variables U and v defined as 

E + + € -  E' 
E E '  

U = - - -  - 

Transforming equation (23) of MUT by means of (3), we obtain 

U 
d2ga(u, U) = {(2+u2)+x(3+v2)} In 

3rK 

+- 2(1-v2)(1-u) l + x  + u 2 { ~ + ( 2 + u 2 ) - x ( 3 + a 2 ) 1 n  1 +x (4) 

where 
u2( 1 - v2) 

2' is the fine structure constant, ro  the classical radius of the electron and Z the atomic 
number. The expression for the screening term L, is determined by the value of a 
parameter 'J, defined as 

6 A' 
m Z '  

^ /= -  

where 6 = 2m2(1 +x)/Eu(l-v2) is the least momentum transferred to the nucleus and 
A ' / T ~ Z ' ~ ~  is the effective atomic radius in the Thomas-Fermi model. In the work of 
MUT, A' is taken as 137, so that 

2 m ( l + ~ ) 1 3 7 Z - " ~  
Eu( 1 - v 2 )  y = -  (6) 

The importance, or otherwise, of screening is determined by the value of y and is regarded 
as complete when y << 1 and absent for y >> 1. For the purpose of computation, the 
conditions were taken to be 'J < 1 for complete screening and y > 1 for no screening. 
Different critical values of y ,  such as 0.1 and 0.01, were assumed in order to test the 
dependence of the cross sections on this parameter. The cross sections were found to be 
substantially independent of the choice of for most E and E' of interest, that is, 
E > 10 GeV, E' > 0.01 GeV. 

The expressions for La are 

La = l n { ~ 1 3 7 Z - " ~ ( 1 + x ) " ~ ) ,  Yd1 
(7) 

y > l  

with e = 2.718 
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The cross section for the first order processes, from equation (42) of MUT, is 

where 
2stE( 1 - U) 

L b  = In 

It is useful to follow Kokoulin and Petrukhin and write 

d2aa,b = 371 1 -(Zci’r,,)2--- dUdC{%a+%6(:)2} U (9) 

where X a , b  = La,bBa,b ; BO,b is the function enclosed in square brackets in equation (4) and 
large brackets in equation (8) respectively. 

To determine the differential probability ~ O ~ , ~ ( U ) ,  it is necessary to integrate (9) with 
respect to U, the splitting of the pair energy. It is most practicable to perform the integra- 
tion numerically with respect to U .  A difficulty arises in assigning an exact upper limit 
to v in view of the unspecific form of the relativistic restrictions previously mentioned. 
As it is not possible to state categorically the precise energy of a particle at which it may 
be regarded as relativistic, the usual procedure adopted is that introduced by Roe (1959) 
in which the range of 2: is defined as 

nm 
uE’ 

IuI < 1 -- n > l  

with the choice of n unspecified. The value of n must be chosen so that (10) does not 
violate the relativistic requirements imposed by (2). A value of n N 4 appears to satisfy 
these requirements and at the same time the range of v is not significantly reduced by 
this choice. Roe (1959) and Stoker er a1 (1963), for instance, have used lower values of n 
which, though not completely unjustified, can lead to negative contributions to the cross 
section. Such contributions have no physical significance and indicate a breakdown in 
the theory. However, present numerical computations have shown that, where 
secondary energies greater than 0.1 GeV are concerned, the actua! assumed value of n 
is not critical, particularly for E’ large. The restrictions imposed by (11) limit the range 
of U to 

2nm P - < U < 1--. 
E E 

The adjustable parameter ci introduced by MUT in order to simplify the integration over 
angles, is known to be of the order of unity. The indeterminancy associated with this 
constant has a most marked effect on the computed cross section whenever E or E’ is 
small. This parameter has been arbitrarily assigned values lying between 1 and 3 by, 
amongst others, Roe (1959, 1971), Stoker et a1 (1963), Allkofer et al(1971) and Bem et a1 
(1969). In most instances the value of ci is chosen to give best agreement between theory 
and experiment and appears most frequently as ci = 2. 
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3. The MET approximate formulae 

In an attempt to simplify (4) MUT have introduced two energy transfer domains. Domain 
I concerns small energy transfers for which U << m/p while domain I1 refers to large 
energy transfers, U >> m/p. The division of the ( E ,  U )  plane into domains is shown in 
figure 2, where additional subdivisions show the regions where screening is effective and 
the nonrelativistic regions where the formulae are not applicable. Similar diagrams are 
to be found in Kokoulin and Petrukhin (1970). Domain I1 is itself subdivided by MUT 
according to the value of U ;  u2 << 1 refers to IIa and 1 - t" c< 1 to IIb (the meaning of a 
and b here is completely different from that in figure 1). This subdivision is a computa- 
tional convenience only and cannot be shown in figure 2. The formulae applicable to 
the various regions are given by MUT in equations (30t(34b). As these expressions 
appear to be in error, and since they are widely used, rederivation was considered 
worthwhile. 

lo- 

\ \  I 

EIGeV) 

Figure 2. Regions available to pair production for L' = 0 and 1 - L?' = 10- '. The thick 
solid lines represent the physical limits for the process. Energy transfers in the shaded region 
are possible, but the formulae are not applicable here. The curves 7 = 1 divide the plane 
into regions where screening is effective or absent. 

For the case x << 1, we have from (4) for I and I1 

2 4  1 
dud@ {( :)I 371. U X 

d go = -(.ZX'~,,)~-L, 1 - U +  - 1 +- ln--(1 - u ) ( l  + u  

with 

L, = l n ( ~ 1 3 7 2 - " ~ ) ,  y < l  

= I n [  xuE(1- 2) ) ,  y >  1 
2me 

In domain I, where U c< niip, (1 -u+ju2)  and (1 -U) may be put equal to unity and u2/4  



84 A G Wright 

may be neglected. Since x << 1 in domain 1 we have from (12) 

It is interesting to note that equation (32) of Bhabha (1935) (no screening) is 
form to equation (13) above. Expressing Bhabha’s equation in terms of U and 

d20(u, U )  = 4 -(Zu’ro)’- du d” (1 +;) In[ kuE( 4m 1 - U’) ) In[: F) 
37c U 

(13) 

similar in 
v we have 

(14) 

In domain IIa, where x >> 1 and v2  << 1, (4) gives 

du dv (nt)  :I;2 
((1 + zj2)u2 +(1- u)(3 - 2 ; ’ ) )  

4 
3n U 

d20alla = --(Zdr,)’_L, - __ 

The same functional dependence on U exhibited by Bhabha’s cross section (discussed in 
the introduction) is apparent in equations (13) and (15). 

In domain IIb, where x << 1 because 1 -U’ << 1, (12) is the appropriate formula. In 
the approximate formulae given by MUT (equations (30) and (34) in MUT), the expression 
for L, is always taken as that pertaining to the case of no screening. It is clear from 
figure 2 that at very high energies this is not necessarily the most appropriate choice of 
L, so that, in this respect alone, the MUT expressions will give misleading results. The 
choice of L, should obviously be governed by the values of the parameter 7 .  

4. Other approximate expressions based on MUT 

The approximate formulae (12), (13) and (15) are of little practical value ; the computer 
time required for integration over U is of the same order as that for equation (4). In 
addition it becomes necessary to introduce yet another subjective criterion to govern 
the transition from region IIa to IIb. 

A more satisfactory approximate formula than the above is that of Stoker and 
Haarhoff (1960) in which advantage is taken of the fact that for E and E‘ small the energy 
partition of the pair tends to be symmetric, that is, E +  2i c -  . Thz variation of the partial 
cross section with U is accounted for to a sufficiently high degree of accuracy by making 
use of an empirical correction factor C(U, E). This allows the cross section to be expressed 
in the following form, independent of U 

It is clear from the computations in a later paper, Stoker et al(1963), that the formula is 
a reliable approximation even at higher energies of the order of 100 GeV. 
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Kobayakawa (1967), using the results of Ueda (private communication to Kobaya- 
kawa), has introduced a semi-empirical v independent formula of the following form 

@(E2 U) = bp(E)4(u) 
with 

6, = constant 62(1+ 6,) 
= u(u + S2)2’ (17) 

where b,(E) is the familiar energy loss expression for muons and takes into account 
the E dependence of the cross section, whereas $ ( U )  expresses the variation of cross 
section with u. Since formula (17) was originally introduced for the purpose of computing 
the mean energy loss dE/dx, discussion on its shortcomings is reserved for 5 10. 

5. The formula of Ternovskii 

Ternovskii (1960a) has obtained an expression for the second order processes which 
does not contain the indeterminate constant U in the screening term. This is presumably 
a result of carrying out the integration over angles more accurately than earlier authors. 
By obtaining the identical expression for B, as in MUT and the following for L, 

uE( 1 - u 2 )  
L, = In( ] y > 1 

4m(l +x)’/’ ’ 

= ln{137Z-”3(1+x)1/2}, y < l  

it is clear by comparing (18) and (7) that U in MUT theory should be nearer 1 than 2. 
Ternovskii (1960b) gives consideration to the influence of multiple scattering (Migdal 
effect), but it would appear that this is relatively unimportant for primary energies less 
than lo5 GeV. As in the case of electron induced bremsstrahlung and y produced pairs, 
there is a suppression of the cross section at small energy transfers (Dovzhenko and 
Pomanskii 1965). A formula for first order processes is given by Ternovskii (equation 
(30) in Ternovskii 1960a), but the interpretation of this formula, which appears to be an 
approximation, is not clear. 

6. The method of Zapolsky 

In the thesis of Zapolsky (1962) cross sections under conditions of no screening and 
complete screening are derived. The main emphasis of the work is concentrated on 
pair production by incident electrons, and consequently cross sections for region I 
(U < m/p) are more carefully examined. (For electron primaries m p and therefore 
x << 1 for most U of interest.) Equations (4.19) and (4.43) from the thesis, functions of 
U only, refer to the two cases of no screening and complete screening respectively. The 
cross section in domain I1 is represented by a function of constant logarithmic slope 
joining smoothly to do, at the upper edge of the domain 

A = constant 
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where 

d 
d In U 

p = -[In da(u)],=,,,, 

7. The treatment of Kel’ner 

According to the investigations of Kel’ner (1967), 1 e previous theories are in agreement 
with one another except for energy transfers in region 11. Kel’ner therefore derived 
exact expressions valid even for large energy transfers. These cross sections have a 
different form from those of the previous authors with the inclusion of terms independent 
of La. For second order processes, two expressions are given (equations (26) and (31) in 
Kel’ner 1967) which represent no screening and complete screening respectively. 

Transforming these equations by means of (3) yields for Kel’ner’s equation (26) 

and for complete screening from (31) 

d’a; = -(Zdr0)’- 371 1 U [2ln{1832-’ 3( l+x)1  2) ]{a l ln[1+~]-b , -&]  

where 

b l  = ( 2 + u 2 )  

c1 = x + u  +-- 
2(1 - U )  

2 U’ 

n = 1 n 2  f L(’)”. l + x  

These expressions contain terms that are not multiplied by the screening function L,; 
Kokoulin and Petrukhin designate these terms by the function A (the last 3 terms in (20) 
and the last 4 in (21)). The A terms are not very different in (20) and (21), but are of 
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opposite sign. Using the representation of (9) we have 

B, = 2 a , ln  1+-  -bl-- { [ :) IC;*) 

= [2{(2+0’)(1+&) +xi?.v.i) 1n( I+;) 

1 2( 1 - vZ) U 2  
- 2(3 + v 2 )  +-- 

l + x  (1-u)( l+x)  

which bears a close resemblance, but is not identical, to B, of MUT and Ternovskii. 
The transformed expressions for the first order processes are given by Wright (1971) 

in formulae (4.30) and (4.31). Similar expressions for the first and second order processes 
are to be found in Rozental’ (1968); these contain a few minor errors. 

8. Kel’ner and Kotov (1968) 

In a subsequent paper Kel’ner and Kotov (1968) use a different approach in which 
screening is accounted for in a continuous manner so that only one formula for second 
order processes is required instead of two, as previously. Their treatment of screening 
is essentially the same as that adopted by Petrukhin and Shestakov (1968) for brems- 
strahlung. The cross section is not expressed in closed form, and a double integration 
over the four-momentum and v is required. The authors have computed cross sections 
for various incident and transferred energies, recording the results in tabular form. 

9. Kokoulin and Petrukhin (1970, 1971) 

A single analytical expression, including first and second order processes based on the 
work of Kel’ner (1967), has been given by these authors. The essential part of this 
formula is the introduction of a single, continuous function for La,b which gives the 
identical expressions in the extreme cases of y << 1 and y >> 1 to those of Kel’ner. For 
example, consider La only where 

with 

2mA’( 1 + x ) Z  - 1 ’ 3  y =  
Eu( 1 - E ~ )  

This function is identical to the screening term in (20) when y >> 1 and for y << 1 is the 
same as the screening term in (21). As a first approximation (20) and (21) may be replaced 
by a single expression 

2 (1 -- U) 
d20, = -(Z~c’r,)~- 371 U du dvL,B, 

where La and B, are given by (23) and ( 2 2 )  respectively. The screening expression (23) 
is further modified to take account of the terms in (20) and (21) which are not functions 
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of La (ie the A terms) ; the above treatment is repeated for the first order process, so that 
finally 

d20a,b = 2 - ( Z a ’ r J 2 -  (’ -“I{ $a+ (F) 2 $ b }  du dv 
371 U 

where 
In the second paper the influence of the nuclear form factor on the cross section is 

taken into account. However, numerical computations show that the effects are ex- 
tremely small: for E > 10 GeV and U < lo-’ the cross section is reduced by less than 
3 %. 

The authors verify the accuracy of the cross section represented in equation (25) 
by direct comparison with the Kel’ner and Kotov (1968) computations and find that 
agreement is within about 2 %. 

and cpb are given in their paper. 

10. Numerical computation of the cross sections 

All the expressions so far given for d20a have been computed for lead. In the case of the 
MUT cross sections, values for n of 4 and 10 were used, but for those of Kel’ner and 
Ternovskii only the case n = 4 was considered. In figure 3 the contributions to the 
differential probability from diagrams (a) and (b) of figure 1, as computed from equation 
(12) from Kokoulin and Petrukhin’s paper, are shown. The insignificant contribution 
from digrams (b),  except when U N 1, is obvious. 

To show the differences in the predicted cross sections as clearly as possible, according 
to the various formulae, they have been plotted relative to the cross section of Kokoulin 
and Petrukhin in figure (4). The effect of the parameter n is shown for the MUT formula; 

lo-l*t , , , , , 1 
IO-’  IO-^ I O - ’  I IO ioi 

E’CGeV 1 

Figure 3. Differential energy transfer probabilities for lead, from the formula of Kokoulin 
and Petrukhin. Incident muon energies are indicated on the curves. 
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0.0 I I I O  

! 0.4- ! 

0.01 0.1 I IO 0.01 0.1 I IO 100 
E’tGeV) E‘( GeV) 

Figure 4. Ratio ( R )  of the differential probabilities, according to the formulae of various 
authors A MUT LY = 2, n = 4 ;  B MUT CI = 1, n = 4 ;  C MUT CI = 1, n = 10; D Ternovskii 
(1960a); E Kel’ner (1967); F Zapolsky (1962), relative to  the predicted values of Kokoulin 
and Petrukhin. 

1 

for E‘ < 0.1 GeV there is a reduction in the cross section as n is increased but little effect 
for E’ > 0.1 GeV, as would be expected. The choice of the parameter @ for E < 10 GeV 
is noticeable over the whole range of energy transfers, although for E > 100 GeV the 
effect is much reduced. This behaviour is expected since x appears only in the logarithmic 
screening term. For E = 1 GeV the cross sections exhibit large differences but as the 
relativistic conditions imposed on the participating particles are more difficult to 
satisfy they cannot be regarded as accurate at this muon energy. At high energy transfers 
(U 2 0.3) the predictions of the various formulae diverge strongly; it is concluded that 
all cross sections should be regarded as inaccurate in this region. 

At energies of 10 and 1000 GeV the cross sections predicted by Kel’ner and Kotov 
(1968) agree to better than 2 % with those of the Kokoulin and Petrukhin formula (these 
differences are too small to indicate on figure (4)). This was ascertained by using com- 
puted values of the function F(E,  U )  as listed in table 1 of Kel’ner and Kotov (1968) for 
the muon energies of 10 and 1000GeV. This agreement is, of course, an essential 
requirement, since the whole purpose of the method of Kokoulin and Petrukhin was to 
replace the complicated expression of Kel’ner and Kotov by something more readily 
computed. 

The semi-empirical formula of Kobayakawa (1967), equation (17), predicts cross 
sections for rock which at E N 1000 GeV are too low by 40 % compared with the 
predictions of MUT equation (4). This can be directly ascribed to the fact that the Mando 
and Ronchi (1952) expression for b,(E) does not predict the same energy loss as the MUT 
cross section, contrary to what Kobayakawa claims. This formula is an inadmissible 
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mixture of two theories and would be improved by retaining the function @(U), with 
perhaps slight modification, together with the replacement of b,(E) by an expression 
based on the MUT theory. 

From figure (4) we see that the cross sections of Zapolsky are in reasonable agreement 
with those of the other authors in region I but, in region 11, the cross section is too low 
because (19) overestimates the slope-the cross sections of other authors, with the 
exception of Bhabha, exhibit a log slope of approximately - 2 for U = m / p .  Zapolsky’s 
expressions (4.19) and (4.43) break down at the edge of domain I, and consequently 
equation (19) cannot be taken as reliable. 

11. The rate of energy loss due to pair production 

The rate of energy loss for a muon is given by 

-E = JJd’o(u, C)U du dt. = b,(E)E. 
dx A 

This double integral was numerically evaluated for standard rock ( Z  = 11, A = 22) 
using the theory of MUT in the two cases x = 1 and 2 with n = 10. Account was taken 
of the contribution to the energy loss by atomic electrons by replacing Z 2  in the cross 
section by Z(Z +a). From Kel’ner and Kotov (1968) for complete screening a = 1.3 
and, as the major contributions to the integral are made under conditions of complete 
screening (see figure 2), negligible error results from assuming a = 1.3 for all U and U. 

In figure 5 energy loss relationships computed from MUT theory are shown together 
with the calculations of Kel’ner and Kotov (1968), Mando and Ronchi (1952) and 

IO io2 io3 io4 
E( GeV 1 

Figure 5.  The pair production energy loss coefficient for standard rock. A MUT I = 2 ;  
B Kel’ner and Kotov (1968); C MUT ct = 1 ; D Mando and Ronchi (1952); E Castagnoli et al 
(1964). 
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Castagnoli et al (1964). The extremely low rate of energy loss obtained by Castagnoli 
er al emphasizes the inadvisability of using the approximate MUT formulae. Separate 
calculations for the formula of Kokoulin and Petrukhin were not made simply because 
such calculations would give the same results as those of Kel’ner and Kotov. 

Following Kobayakawa, it is convenient to express b,(E) in empirical form. For the 
curve of Kel’ner and Kotov we have 

x g-  cm2, E < 100GeV 

(27) 
In E ’ p  - 5.43 
In E:p--4.34 

= 2.75 ~ _ _ _ _  j x10-6, io0 G E G 5 x 104. 

12. Conclasions 

It would appear that the basic treatments of the process of pair production by MUT, 
Ternovskii, Kel’ner, Kel’ner and Kotov and Kokoulin and Petrukhin are all in reason- 
able agreement. particularly for high energy muons, E > 100%eV. At low energy 
transfers the various formulae exhibit very different characteristics from one another : 
in most cases these differences are readily explained. It is clear that the cross sections 
are not meant to apply to energy transfers below 10 MeV and predictions in this region 
must be regarded with caution. It is not obvious why the expressions of Kel’ner and 
Kokoulin and Petrukhin exhibit such striking differences when E‘ cz E ;  according io 
Kel’ner, the  formulae should be accurate in this region. Figure (2) illustrates that, for 
muons with energy >lOGeV, most energy transfers take place under conditions of 
complete screening : this point appears not to have been fully appreciated in the past. 

Clearly if numerical cross sections are required the most convenient expression to 
use is that of Kokoulin and Petrukhin ; it has been firmly established that this formula 
does give the same results as that of Kel’ner and Kotov, while having the advantage of 
being easy to compute. With regard to approximate formulae it is best, now that high 
speed computers are readily available, to avoid them altogether, although, for the purpose 
of c quick check, the expression of Stoker et al(1963) is useful for hand calculation. 

The earlier estimates of b,(E) of Mando and Ronchi (1952), Hayman et al (1963), 
Kobayakawa (1967) and Castagnoli et al (1964) are not in accord with those obtained 
by direct integration of the cross sections of MUT, Kel’ner and Kotov, Ternovskii or 
Kokoulin and Petrukhin. All the latter cross sections predict b,(E) values in the region 
on” 2-2.6 x IOp6, whereas in the former, values in the range 1.1-1.7 x are given. 
This conclusion is supported by the work of Erlykin (1966), Rozental’ (1968), Meyer 
et ai (1970) and Kotov and Logunov (1970). 

The various approaches adopted in the treatment of pair production are essentially 
variants of the Feynman method. Each author has paid more attention to the mathe- 
matical details of the derivations than has his predecessor. Apart from inaccuracies 
introduced in presenting the cross sections in closed form, there are various physical 
effects which have been neglected ; amongst the most significant corrections discussed 
by Rozental’ (1968) are those of the influence of orbital electrons and radiative cor- 
rections. He concludes that the magnitude of the uncertainty, arising from all the 
physical assumptions made, is of the order of 5 %. 
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